The New Periodicity Lemma revisited

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The New Periodicity Lemma revisited

Some years ago a New Periodicity Lemma (NPL) was published, showing that the occurrence of two squares at any position i in a string necessarily precludes the occurrence of other squares of specified period in a specified neighbourhood of i. The proof of this lemma was complex, breaking down into 14 subcases, and required that the shorter of the two squares be regular. In this paper we signific...

متن کامل

A New Periodicity Lemma

Given a string x = x[1..n], a repetition of period p in x is a substring ur = x[i..i+rp−1], p = |u|, r ≥ 2, where neither u = x[i..i+p−1] nor x[i..i+(r+1)p−1] is a repetition. The maximum number of repetitions in any string x is well known to be Θ(n logn). A run or maximal periodicity of period p in x is a substring urt = x[i..i+rp+ |t|−1] of x, where ur is a repetition, t is a proper prefix of...

متن کامل

The Farkas Lemma Revisited

The Farkas Lemma is extended to simultaneous linear operator and polyhedral sublinear operator inequalities by Boolean valued analysis. Introduction The Farkas Lemma, also known as the Farkas–Minkowski Lemma, plays a key role in linear programming and the relevant areas of optimization (cp. [1]). Some rather simple proof of the lemma is given in [2]. Using the technique of Boolean valued analys...

متن کامل

The stable regularity lemma revisited

We prove a regularity lemma with respect to arbitrary Keisler measures μ on V , ν on W where the bipartite graph (V,W,R) is definable in a saturated structure M̄ and the formula R(x, y) is stable. The proof is rather quick, making use of local stability theory. The special case where (V,W,R) is pseudofinite, μ, ν are the counting measures, and M̄ is suitably chosen (for example a nonstandard mode...

متن کامل

Leftover Hash Lemma, Revisited

The famous Leftover Hash Lemma (LHL) states that (almost) universal hash functions are good randomness extractors. Despite its numerous applications, LHL-based extractors suffer from the following two limitations: – Large Entropy Loss: to extract v bits from distribution X of minentropy m which are ε-close to uniform, one must set v ≤ m − 2 log (1/ε), meaning that the entropy loss L def = m − v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2016

ISSN: 0166-218X

DOI: 10.1016/j.dam.2016.05.003